
for 0 I t 5 b and: 

for t > b.  Equation 13 coincides with Eq. 24 (l), which is 
valid for the model only after infusion has ceased. Equation 
12 gives a very explicit form of the solution during the 
infusion time. 

I t  is hoped that the corrections made in this article can 
contribute to the broader application and understanding 
of the method proposed by Benet. 
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Mathematical Treatment  of Linear 
Mammillary Models Using Inverse 
Laplace Transforms: A Reply 

Keyphrases 0 Mammillary models, linear-mathematics, inverse La- 
place transforms 0 Laplace transforms-inverse, in mathematical 
treatment of linear mammillary models 0 Mathematics-inverse Laplace 
transforms in linear mammillary models 

To the Editor: 
The impetus for preparing my 1972 paper on the general 

treatment of linear mammillary models as used in phar- 
macokinetics (1) was a sense of frustration with the pages 
of mathematical derivation included as part of each 
pharmacokinetic paper that appeared in print up to that 
time. As I stated in the introduction (1): “This paper in- 
tends to present some very simplified general treatments 
which will allow workers to derive equations for any linear 
mammillary compartment model with any first- or zero- 
order input process.” I believed then, as I believe now, that 
pharmacokinetic Compartment models are useful only as 
a convenient means to describe and predict the time course 

of measurable body fluid compartments such as plasma, 
blood, and urine following single and multiple doses. I did 
not consider the possibility of input into a peripheral 
compartment or the general derivation for such a treat- 
ment, as was described by Vaughan and Trainor (21, since 
I believe this use of compartment models is inappropriate, 
i.e., defining one compartment in the model as specifically 
describing an organ in the body such as the liver. Such a 
combination of compartment and perfusion models re- 
quires exponential terms that are not needed to fit the 
minimal compartment model adequately and leads to 
difficulties in interpreting “absorption” rate constants for 
such a system. 

Haborak et al. (3) questioned the solution of two equa- 
tions in my earlier paper, stating: “The presence of the 
factor (1 - e-bs)  destroys the polynomial character of the 
numerator, so neither the General Partial Fraction The- 
orem nor the Heaviside expansion immediately pertains.“ 
They are correct. However, the correct solution is also 
obtained using the one-step method that I proposed (1,4). 
Apparently, the restriction concerning the polynomial 
character of the numerator may be relaxed when expo- 
nential functions appear in the numerator due to the in- 
clusion of a zero-order input function. Since I am no 
mathematician, I shall leave the proof of this exception to 
others. However, I have tested the one-step method and 
found that it gives the correct equations for the usual 
multicompartment pharmacokinetic models with zero- 
order input into the central or peripheral compart- 
ments. 

The authors of the preceding article (3) were most dis- 
turbed by the fact that I proposed the use of a single 
equation to describe the time course of drug in the central 
compartment during infusion and when infusion has 
ceased. Although I did explain, following Eq. 13 (11, that 
this approach was equivalent to using two independent 
variables, t = clock time and b = infusion time, Haborak 
et al. (3) stated that “changing constants to variables in 
the middle of a derivation confuses the reader. . ..” I must 
admit that this point has led to questions by a number of 
readers over the years. Perhaps the preceding note and this 
reply will help readers to understand the appropriate use 
of Eqs. 13 and 24 in the 1972 paper (1). 

Haborak et al. (3) also stated that my use of a single 
equation “requires very tedious calculations.’’ This 
statement I do not understand; it certainly would be 
quicker to calculate A 1 values in Eq. 13 on any program- 
mable calculator using a single equation with two inputs 
during the infusion phase than it would be using two dif- 
ferent equations. But “calculation” is not the important 
functional use for Eq. 13. In 1972, I was concerned that 
investigators were fitting data from the postinfusion phase 
separately from the infusion phase. This procedure is in- 
appropriate, as I stated previously (1). In 1972, many of the 
computer programs used to fit pharmacokinetic data, 
particularly the BMD series (5), only allowed the investi- 
gator to fit one function a t  a time. However, I stated then 
(1) that: “All the least-squares nonlinear fitting programs 
usually utilized in pharmacokinetic treatments have the 
ability to fit data to Eq. 13. . . .” 

In conclusion, the previous article (3) points out the 
detailed solution for the Laplace derivation when an ex- 
ponential operator term appears in the numerator of the 
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Laplace transform. Hopefully, that paper and this re- 
sponse will allow the uninitiated reader to  understand 
better the use of such functions. However, once the reader 
becomes initiated (i.e., not confused), I suggest he or she 
define b as the time of infusion rather than the time when 
infusion ends and use the anti-Laplace techniques and 
equations presented in my 1972 publication. They really 
are easier to use. 
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Time-Dependent Kinetics VI: 
Direct Relationship between 
Equations for Drug Levels during 
Induction and Those Involving 
Constant Clearance 

Keyphrases o Pharmacokinetics-time dependent, equations for drug 
levels during induction and during constant clearance 0 Models, phar- 
macokinetic-equations for drug levels during induction and during 
constant clearance 

To the Editor: 

In a previous report (l), equations were derived to de- 
scribe the time course of drug levels during enzyme in- 
duction under various drug input conditions: single-dose 
intravenous (Case I) and oral (Case 11) administration, 
constant rate intravenous infusion (Case III), and multi- 
ple-dose intravenous (Case IV) and oral (Case V) admin- 
istration. These equations were based on the following 
assumptions: 

1. Drug distribution is instantaneous (one compartment 
of volume V). 

2. Drug is excreted unchanged by first-order pro- 
cesses. 

8. Metabolism occurs by several first-order pathways, 
with one being controlled by a single inducible enzyme. 

4. Metabolic clearance (pre- and postinduction) ap- 
proaches intrinsic clearance. 

5. Total body drug clearance increases during induction 
from a preinduction value Q ( t  I A )  to a maximum Q’ ac- 
cording to (2): 

Q(t)  = Q‘ - (Q’ - 8)  exp[-k‘(t - X)] (Eq. 1) 

where k‘ represents the first-order degradation rate con- 

A 

TIME 

Figure 1-Exponent I (X ,  t)  in time-dependent kinetics ( A )  and in 
linear kinetics (B). Whereas in linear kinetics (constant clearance) the 
area term I(X, t) increases proportionately with time, in time-dependent 
kinetics the increase in area is more than proportional. 

stant of the induced enzyme, k’ < 0.1 Q’/V,  and X is the 
time at  which induction begins. 

To date, equatiorls based on an exponentially increasing 
clearance have been validated only to the extent that the 
time course of blood levels that they predict is compatible 
with some experimental observations (3-7). In this report, 
a mathematical proof is presented to show that these 
equations are consistent with the corresponding equations 
of the classical one-compartment model with constant 
clearance. In fact, the latter represent a particular case of 
the former. 

Table I presents solutions for Cases I-V with corre- 
sponding solutions for the one compartment with constant 
clearance. 

Figure 1 is a plot of Q ( t )  uersus time. The term I ( X ,  t )  
in every equation involving a time-dependent clearance 
(Table I) is defined as: 

I ( X .  t )  = s‘ Q ( u )  du  (Eq. 2) 

and, therefore,.representi the area under the Q ( t )  uersus 
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